Cholangiocarcinomas (CCAs) are hepatobiliary cancers with features of cholangiocyte differentiation; they can be classified anatomically as intrahepatic CCA (iCCA), perihilar CCA (pCCA), or distal CCA. These subtypes differ not only in their anatomic location, but in epidemiology, origin, etiology, pathogenesis, and treatment. The incidence and mortality of iCCA has been increasing over the past 3 decades, and only a low percentage of patients survive until 5 years after diagnosis. Geographic variations in the incidence of CCA are related to variations in risk factors. Changes in oncogene and inflammatory signaling pathways, as well as genetic and epigenetic alterations and chromosome aberrations, have been shown to contribute to the development of CCA. Furthermore, CCAs are surrounded by a dense stroma that contains many cancer-associated fibroblasts, which promotes their progression. We have gained a better understanding of the imaging characteristics of iCCAs and have developed advanced cytologic techniques to detect pCCAs. Patients with iCCAs usually are treated surgically, whereas liver transplantation after neoadjuvant chemoradiation is an option for a subset of patients with pCCAs. We review recent developments in our understanding of the epidemiology and pathogenesis of CCA, along with advances in classification, diagnosis, and treatment.

Keywords: Cancer-Associated Fibroblasts; Distal Cholangiocarcinoma; Intrahepatic Cholangiocarcinoma; Molecular Pathogenesis.

Cholangiocarcinoma (CCA) is the most common biliary malignancy and the second most common hepatic malignancy after hepatocellular carcinoma (HCC). CCAs are epithelial tumors with features of cholangiocyte differentiation. Intrahepatic cholangiocarcinomas (iCCAs) are located within the hepatic parenchyma. The second-order bile ducts serve as the point of separation between iCCAs and perihilar CCAs (pCCAs) or distal CCAs (dCCAs)—the cystic duct is the anatomic boundary between these latter 2 subtypes (Figure 1A). The Bismuth–Corlette classification stratifies perihilar tumors on the basis of biliary involvement. This classification recently was extended to also take into account arterial and venous encasement. pCCA is the most common type of CCA. In a large series of patients with bile duct cancer, 8% had iCCA, 50% had pCCA, and 42% had distal CCA. CCA has a poor prognosis; patients have a median survival of 24 months after diagnosis. The only curative treatment option is surgery, for early stage disease.

Epidemiology

Cholangiocarcinoma accounts for 3% of all gastrointestinal tumors. Over the past 3 decades, the overall incidence of CCA appears to have increased. The percentage of patients who survive 5 years after diagnosis has not increased during this time period, remaining at 10%. In the United States, Hispanics and Asians have the highest incidence of CCA (2.8 per 100,000 and 3.3 per 100,000, respectively), whereas African Americans have the lowest incidence of CCA (2.1 per 100,000). African Americans also have lower age-adjusted mortality rates compared with whites (1.4 per 100,000 vs 1.7 per 100,000). Men have a slightly higher incidence of CCA and mortality from cancer than women. With the exception of patients with primary sclerosing cholangitis (PSC), a diagnosis of CCA is uncommon before age 40 years.

Abbreviations used in this paper: α-SMA, α-smooth muscle actin; CA19-9, carbohydrate antigen 19-9; CAF, cancer-associated fibroblast; CCA, cholangiocarcinoma; CT, computed tomography; CXCR4, chemokine (C-X-C motif) receptor 4; dCCA, distal cholangiocarcinoma; ECM, extracellular matrix; EGFP, enhanced green fluorescent protein; EGFR, epidermal growth factor receptor; EMT, epithelial–mesenchymal transition; ERBB2, v-erb-b2 avian erythroblast leukemia viral oncoprotein homolog 2; ER, endoscopic retrograde cholangiography; ERK, extracellular signal regulated kinase; FGFR, fibroblast growth factor receptor; FISH, fluorescence in situ hybridization; HGF, hepatocyte growth factor; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; iCCA, intrahepatic cholangiocarcinoma; IDH, isocitrate dehydrogenase; IL 6, interleukin 6; K-RAS, Kirsten rat sarcoma viral oncogene homolog; MAPK, mitogen-activated protein kinase; miR, microRNA; MCL1, myeloid cell leukemia sequence 1; MET, met proto-oncogene; MMP, matrix metalloproteinase; MRI, magnetic resonance imaging; OR, odds ratio; pCCA, perihilar cholangiocarcinoma; PDGF, platelet-derived growth factor; PI, phosphatidylinositol; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PSC, primary sclerosing cholangitis; STAT, signal transducer and activator of transcription; TP53, tumor protein 53.
Globally, hepatobiliary malignancies account for 13% of cancer-related deaths; 10%–20% of these are attributable to CCA. The mean age at diagnosis of CCA is 50 years. The global incidence of iCCA varies widely, from rates of 113 per 100,000 in Thailand to 0.1 per 100,000 in Australia. Differences in the prevalence of genetic and other risk factors presumably account for this extensive variation.

Epidemiologic studies have indicated that the age-adjusted mortality rate for iCCA is increasing, whereas the mortality rate from pCCA and dCCA could be decreasing. A study of a World Health Organization database reported a substantial global increase in iCCA mortality, with a decreasing trend in mortality from pCCA plus dCCA. Although this observed increase in the incidence of CCA over the past 30 years has been recorded as an increase in iCCA, it could result from misclassification of perihilar tumors as iCCAs. According to the US Surveillance, Epidemiology, and End Results database, the age-adjusted incidence rate for iCCA increased from 0.59 per 100,000 in 1990 to 0.91 per 100,000 in 2001. It subsequently decreased to 0.6 per 100,000 by 2007. Conversely, the incidence rate for pCCA plus dCCA remained around 0.8 per 100,000 until 2001, and then gradually increased to 0.97 per 100,000 by 2007. Perihilar tumors were coded as iCCAs before 2001 and subsequently were coded as pCCAs after implementation of the third edition of the International Classification of Disease for Oncology. This update likely influenced the aforementioned changes in incidence rates of both CCA subtypes. Similar trends in the incidence of CCA subtypes were noted in the United Kingdom after the change to the third edition of the International Classification of Disease for Oncology in 2008.

Cells of Origin

iCCA is a histologically diverse hepatobiliary malignancy considered to develop from biliary epithelial cells or hepatic progenitor cells (Figure 1B). A recently proposed classification of iCCAs subdivided these tumors into the conventional, bile ductular, or intraductal neoplasm type, or rare variants (combined hepatocellular CCA, undifferentiated type, squamous/adenosquamous type). The conventional type includes small-duct or peripheral type and large-duct or perihilar type. Neural cell adhesion molecule, a marker of hepatic progenitor cells, has been detected in the bile ductular and combined hepatocellular CCA types, so these might have originated from hepatic progenitor cells.

Distal and pCCA have been proposed to arise from the biliary epithelium and periportal glands. Extrahepatic bile ducts and large intrahepatic bile ducts are lined by mucin-producing cuboidal cholangiocytes. A recent study showed that mucin-producing iCCAs and hilar CCA had gene expression and immunohistochemical profiles similar to those of the cylindric, mucin-producing cholangiocytes that line hilar and intrahepatic large bile ducts. A model in which iCCAs arise from transdifferentiation and subsequent neoplastic conversion of normal hepatocytes into malignant cholangiocytes has been proposed. Fan et al showed in mice that overexpression of Notch1 and AKT resulted in the development of invasive cystadenocarcinomas via conversion of hepatocytes into...
cholangiocyte precursors of iCCA. Sekiya and Suzuki also showed that in mice, Notch-mediated conversion of hepatocytes into biliary cells leads to macronodular cirrhosis and iCCAs. Therefore, iCCAs may not have a single lineage, but instead derive from different cells of origin. In support of this theory, a recent study showed that transformed hepatocytes, hepatoblasts, and hepatic progenitor cells can give rise to a broad spectrum of liver tumors, ranging from CCA to HCC. These studies also promote cell proliferation. The combination of DNA damage, evasion of apoptosis, and cell proliferation are all components of cell transformation.

Epidermal growth factor–receptor (EGFR) signaling also contributes to cholangiocarcinogenesis and CCA progression. Activation of EGFR leads to activation of extracellular-signal-regulated kinases (ERKs) 1 and 2 (also known as p44/42 MAPK). EGFR inhibitors decrease expression of cyclooxygenase-2 by CCA cells. V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) is another member of the EGFR family that contributes to CCA development. In mice, overexpression of ERBB2 led to formation of tumors along the biliary epithelium. Hepatocyte growth factor (hepapoietin A; scatter factor) (HGF) is a stromal paracrine mediator that regulates tumor invasiveness and metastasis. Activation of MET, the receptor for HGF, up-regulates several signaling pathways, including those involving phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–AKT, STAT3, and MAPK. CCAs express higher levels of MET and HGF than nontumor tissues. MET overexpression was associated with activation of members of the EGFR family, particularly of ERBB2.

Cholestasis also contributes to the development of CCA, and bile acids have important roles in this process, activating growth factors that mediate proliferation. Bile acids activate EGFR and increase expression of cyclooxygenase-2 via a MAPK cascade. In addition to bile acids, cyclooxygenase-2 overexpression is induced by oxysterols and inducible nitric oxide synthase. Oxysterols are overlooked in the pathogenesis of CCA. These oxidative degradation products of cholesterol are abundant in bile. They are endogenous ligands for the

Figure 1. Anatomic localization of CCA and cells of origin in CCA. (A) Anatomic localization of CCA. CCA is divided into 3 subtypes, based on anatomic location. Modified with permission from Elsevier and Razumilava et al. (B) Cells of origin in CCA.

Inflammation

CCAs frequently arises under conditions of inflammation, which is believed to contribute to pathogenesis. A variety of cytokines, growth factors, tyrosine kinases, and bile acids can contribute to alterations in proliferation, apoptosis, senescence, and cell-cycle regulation required for cholangiocarcinogenesis. Inflammatory cytokines activate inducible nitric oxide synthase, leading to excess nitric oxide with resultant single-stranded, double-stranded, and oxidative DNA lesions, as well as inhibition of DNA repair enzymes. Interleukin (IL)-6, an inflammatory mediator secreted by CCA and stromal inflammatory cells, can function in an autocrine or paracrine manner to promote cell survival and provide mitogenic signals. Myeloid cell leukemia sequence 1 (MCL1) is an anti-apoptotic BCL2 family member that mediates tumor necrosis factor–related resistance to apoptosis-inducing ligands in CCAs. IL-6 increases the expression of MCL1 via constitutive activation of signal transducer and activator of transcription (STAT) signaling and protein kinase B (Akt). IL-6 binds to the gp130 receptor, leading to its subsequent dimerization and activation of the gp130-associated janus kinases, including janus kinase 1 and janus kinase 2, which leads to STAT3 activation. Epigenetic silencing of suppressor of cytokine signaling 3 results in sustained IL-6 signaling via STAT3. Inflammatory signaling pathways therefore appear to promote the development of CCA by causing DNA damage and blocking the apoptosis normally induced by the DNA damage response. These cytokines also promote cell proliferation. The combination of DNA damage, evasion of apoptosis, and cell proliferation are all components of cell transformation.

Epidermal growth factor–receptor (EGFR) signaling also contributes to cholangiocarcinogenesis and CCA progression. Activation of EGFR leads to activation of extracellular-signal-regulated kinases (ERKs) 1 and 2 (also known as p44/42 MAPK). EGFR inhibitors decrease expression of cyclooxygenase-2 by CCA cells. V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) is another member of the EGFR family that contributes to CCA development. In mice, overexpression of ERBB2 led to formation of tumors along the biliary epithelium. Hepatocyte growth factor (hepapoietin A; scatter factor) (HGF) is a stromal paracrine mediator that regulates tumor invasiveness and metastasis. Activation of MET, the receptor for HGF, up-regulates several signaling pathways, including those involving phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–AKT, STAT3, and MAPK. CCAs express higher levels of MET and HGF than nontumor tissues. MET overexpression was associated with activation of members of the EGFR family, particularly of ERBB2.

Cholestasis also contributes to the development of CCA, and bile acids have important roles in this process, activating growth factors that mediate proliferation. Bile acids activate EGFR and increase expression of cyclooxygenase-2 via a MAPK cascade. In addition to bile acids, cyclooxygenase-2 overexpression is induced by oxysterols and inducible nitric oxide synthase. Oxysterols are overlooked in the pathogenesis of CCA. These oxidative degradation products of cholesterol are abundant in bile. They are endogenous ligands for the
Genetics

A few studies have assessed the roles of genetic factors, such as chromosome aberrations or genetic and epigenetic alterations in tumor suppressor genes and oncogenes, in the pathogenesis of human CCA. However, these studies have produced no definitive results because they analyzed a limited number of genes in combined CCA specimens, without separate analyses of different subtypes. A comparative genomics hybridization analysis of 32 CCA samples from patients (7 iCCA, 13 pCCA, and 12 dCCA) showed that they all contained gains at 16q, 17p, 17q, 19p, and 19q, which included regions encoding ERBB2, mitogen-activated protein kinase kinase 2 (MEK2), and platelet-derived growth factor-beta (PDGFB). A meta-analysis of 5 studies that used comparative genomics hybridization to analyze 98 iCCAs found copy number losses at 1p, 4q, 8p, 9p, 17p, and 18q, and gains at 1q, 5p, 7p, 8q, 17q, and 20q. In this meta-analysis, there was considerable variation among the 4 studies that were performed in Asia and the 1 study from Europe. This variation could have resulted from differences in ethnicity and etiologic associations among the studies.

Whole-exome sequencing analyses of 8 liver-fluke-related CCAs identified 206 somatic mutations in 187 genes. The frequency of these mutations was validated in an additional 46 liver-fluke-related CCAs. Mutations frequently were detected in oncogenes and tumor suppressor genes such as those encoding tumor protein 53 (TP53) (mutations in 44.4% of CCAs), Kirsten rat sarcoma viral oncogene homolog (KRAS) (16.7%), and SMAD family member 4 (16.7%). Mutations also were found in myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3) (14.8% of cases), ring finger protein 43 (RNF43) (9.3%), paternally expressed 3 (PEG3) (5.6%), and roundabout, axon guidance receptor, homolog 2 (ROBO2) (9.3%). These genes are involved in deactivation of histone modifiers, activation of G-proteins, and loss of genomic stability.

This study, performed in Asia, has been the only whole-exome sequence analysis of CCAs. Whole-genome sequencing studies are needed to evaluate CCAs from Western patients. A recent study comprising single-nucleotide polymorphism array, gene expression profile, and mutation analyses of 149 iCCAs identified inflammation and proliferation classes of this tumor. Several copy number alterations were identified, including losses at 3p, 4q, 6q, 9p, 9q, 13q, 14q, 8p, 17p, and 21q, and gains at 1q and 7p. Features of the inflammation class included activation of inflammatory pathways, overexpression of cytokines, and activation of STAT3. The proliferation class was characterized by activation of oncogene signaling pathways involving RAS, MAPK, and MET. Activating mutations in KRAS have been detected frequently in CCAs. At least 2 studies have reported a higher incidence of activating mutations in KRAS in pCCAs compared with iCCAs. In one cohort, the incidence of these mutations was 53% in pCCAs compared with 17% in iCCAs. In a transcriptome profile analysis of 104 CCAs and 59 matched nontumor samples (controls), patients could be categorized based on overall survival time, early recurrence, and presence or absence of KRAS mutations; a detailed class comparison identified 4 subclasses of patients. Those with CCAs with altered expression of genes that regulate proteasome activity, with dysregulation of ERBB2; and with overexpression of EGFR, MET, and KI67 had the worst outcomes.

Inactivation of TP53, which regulates the cell cycle, is one of the most common genetic abnormalities in cancer cells and also has been detected during cholangiocarcinogenesis. A review of 10 studies, comprising 229 patients with CCA from Europe, Asia, and the United States, reported TP53 mutations in 21% of CCAs. Mutations in other genes, including EGFR, neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), PI3K, and APC, have been less frequently described.

There has been growing interest in the effects of somatic mutations in genes encoding isocitrate dehydrogenases (IDH) 1 and 2. IDH1 and IDH2 mutations frequently have been detected in gliomas, but rarely have been observed in other solid tumors. IDH mutations were detected in 22% of CCA specimens—more frequently in iCCAs (28%) than pCCAs and dCCAs (7%). Recurrent mutations in IDH1 were observed in a subset of biliary tract tumor samples in a recent broad-based mutation profile analysis of gastrointestinal tumors. A subsequent analysis of 62 CCAs detected IDH1 mutations in only iCCAs. IDH1 and IDH2 mutations were associated significantly with increased levels of p53 and DNA hypermethylation. Epigenetic changes associated with IDH mutations likely mediate their oncogenic effects. The product of the enzymatic activity of mutant IDH1 and IDH2 is 2-hydroxyglutarate (Figure 2A). This metabolite therefore might serve as a biomarker for IDH1 and IDH2 mutations, and for a subset of patients who might be treated with IDH inhibitors (Figure 2B).

A number of epigenetic alterations, such as promoter hypermethylation and microRNA dysregulation, have been associated with the development of CCA. However, whole-epigenome analysis has not been conducted and microRNA (miR) profiling is possible with only small numbers of tumor samples. Promoter hypermethylation has been reported to silence tumor suppressor genes including CDKN2 (observed in 17%–83% of CCAs), suppressor of cytokine signaling 3 (in 62%), Ras association (RalGDS/AF-6) domain family member 1 (RASSF1A) (in 31%–69%), and APC (in 27%–47%).

Gene fusions, such as the BCR-ABL gene in chronic myeloid leukemia, are driver mutations in cancer, which play a role in certain cancers. Fibroblast growth factor receptor (FGFR) fusions are active kinases. A recent study identified novel FGFR2 gene fusions in CCA. Cells with these FGFR fusions were susceptible to FGFR inhibitors, signifying that FGFR kinase inhibition may be a valid therapeutic strategy in CCA patients harboring these gene fusions.

miRs are noncoding RNAs that function in posttranscriptional regulation of gene expression. A cluster
of 38 miRs was expressed differentially in 27 iCCA samples, compared with nontumor tissues. miR21 is overexpressed in CCAs and could have oncogenic effects, partly by inhibiting programmed cell death 4 and tissue inhibitor of matrix metalloproteinase (MMP)3. miR21 also was found to regulate phosphatase and tensin homolog deleted on chromosome ten-dependent activation of PI3K signaling in CCAs, to affect chemosensitivity. miR200C prevents the epithelial–mesenchymal transition (EMT); changes in its level might be used as a prognostic factor. Further studies are needed to determine how alterations in miRs contribute to the development of CCA, and how these changes might be used to determine patients’ prognoses.

Developmental Pathways

The Notch signaling pathway regulates embryonic development and proliferation of the biliary tree. Not surprisingly, therefore, Notch dysregulation also has been implicated in cholangiocarcinogenesis. Two recent studies in mice have shown that Notch activation is required for conversion of normal adult hepatocytes to biliary cells that are precursors of iCCA. Overexpression of intracellular domain of the Notch 1 receptor in liver cells of mice resulted in formation of iCCAs. In this model, an inhibitor of γ-secretase, an enzyme necessary for Notch signaling, suppressed tumor formation.
Another evolutionary conserved, developmental pathway is the Hedgehog signaling pathway. Hedgehog signaling is deregulated in many types of tumors, including CCAs. Inhibition of hedgehog signaling with cyclopamine impedes CCA cell migration, proliferation, and invasion.57,58 Hedgehog signaling also has been implicated in survival signaling by myofibroblast-derived CCAs. PDGF-β protects CCA cells and promotes tumor survival in mice with CCAs, but cyclopamine reverses these effects.60

Wnt signaling also is required for intrahepatic bile duct development and proliferation.89 Wnt-inducible signaling pathway protein 1v is overexpressed in stroma nests around CCAs, and levels of Wnt-inducible signaling pathway protein 1v are associated with reduced survival times of patients. Wnt-inducible signaling pathway protein 1v stimulated the invasive activity of CCA cell lines by activating MAPK1 and MAPK3.90

Tumor Microenvironment

Carcinogenesis in CCA includes alterations in the stroma, recruitment of fibroblasts, remodeling of the extracellular matrix (ECM), changing patterns of immune cell migration, and promotion of angiogenesis (*Figure 3A*).91 iCCAs and pCCAs are characterized by a dense and reactive desmoplastic stroma (*Figure 3B*) that contains many α-smooth muscle actin (α-SMA)-positive myofibroblasts, also known as cancer-associated fibroblasts (CAFs). The tumor stroma surrounds the malignant ducts and glands and comprises most of the tumor mass.92,93 The stroma promotes tumor progression via reciprocal communication between the stromal cells and cancer cells.92

The precise origin of CAFs is unclear, although several cell types, including hepatic stellate cells, portal fibroblasts, and bone marrow-derived precursor cells, have been proposed as candidates.92,94-96 The EMT also has been proposed to produce CAFs.93 During tumorigenesis, the EMT is characterized by the presence of tumor cells that express mesenchymal markers such as vimentin, tenasin, fibronectin, and the zinc finger protein Snail.92 Immunohistochemical studies have shown the expression of these markers by human CCA cell lines.97-99 In mice, xenograft tumors grown from enhanced green fluorescent protein (EGFP)-expressing human CCA cells were found to be surrounded and infiltrated by α-SMA-expressing CAFs. Interestingly, EGFP was not co-expressed with α-SMA, indicating that the EMT does not produce CAFs in CCAs.100 Based on combined evidence, α-SMA-expressing CAFs appear to be a heterogeneous population of cells that originate from several cell lineages, but not from epithelial cancer cells.

CAFs produce factors that stimulate ECM production, leading to a fibrogenic response (*Figure 3C*).92 Factors produced by CAFs include transforming growth factor-β, PDGF isomers, connective tissue growth factor, and insulin-like growth factor binding proteins.92 PDGF-mediated interactions between CAFs and tumor cells have been observed, such as recruitment of CAFs by PDGF-D secreted by CCA cells.60,100,101 PDGF-D stimulates CAF migration via its receptor platelet-derived growth factor receptor (PDGFR), which is highly expressed on CAFs, and activation of small Rho guanosine triphosphatases and the JNK signaling pathway.100

Activated CAFs also secrete paracrine factors that promote initiation and progression of cancer. These include matricellular proteins, growth factors, chemokines, and ECM proteases. Periostin is a matricellular protein that is overexpressed by CAFs compared with normal fibroblasts; its presence correlates with shorter survival times of patients. Knockdown of the periostin receptor, the $\alpha5$ subunit of integrin, with small interfering RNA, reduced stimulation of tumor proliferation and invasion by periostin.102 The ECM that surrounds pancreatic tumors also has been shown to overexpress periostin, which promotes tumor invasiveness.103 Tenascin-C, another ECM protein produced by CAFs, also promotes tumor migration and invasiveness.92 In CCA cell lines, HGF promoted invasiveness and motility by inducing phosphorylation of Akt and ERK 1/2.104 Similarly, stromal cell-derived factor-1, through activation of its receptor chemokine (C-X-C motif) receptor 4 (CXCR4), induced CCA cell invasion via ERK 1/2 and Akt.105,106 This process was disrupted by the CXCR4 inhibitor AMD3100.106

ECM degradation and remodeling is required for tumor progression. MMPs degrade and remodel the ECM during fibrogenesis and carcinogenesis. MMP1, MMP2, MMP3, and MMP9 are strongly expressed in CCAs and are associated with invasive tumors.107,108 Fibroblast activation protein is a stromal protein; its high expression by CAFs has been associated with tumors with an aggressive phenotype.109

The exact mechanisms by which tumor and stroma communicate are not clear. However, the importance of the desmoplastic stroma in CCA progression indicates that it could be a new therapeutic target, perhaps via selective targeting of CAFs.110

Animal Models

Animal models are essential for the development of new therapeutic strategies and diagnostic tools.111 Animal models of CCA (*Table 1*) include mice with xenograft tumors,43,112-119 mice with genetic changes that lead to CCA formation,86,120-124 rats with orthotopic tumors,125,126 and animals that develop CCAs after exposure to carcinogens.53,127-129 Although these models offer an opportunity to bridge the chasm between in vitro findings and clinical applicability, they have limitations. The tumor microenvironment is an important feature in CCA development. It sometimes can be a challenge to study interactions between cancer cells and the stroma in mice with xenograft tumors because the tumor is not growing in the same microenvironment as it does in human beings.
Figure 3. Microenvironment of cholangiocarcinoma. (A) Components of the tumor microenvironment in CCA. (B) Micrograph of a stromal CCA. (C) Factors secreted by cancer-associated fibroblasts. CTGF, connective tissue growth factor; SDF-1, stromal cell–derived factor 1; TGF-β, transforming growth factor-β.
<table>
<thead>
<tr>
<th>Experimental approach</th>
<th>Key features</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection of 3 × 10^6 Mz-ChA-1 cells</td>
<td>Tumor development in 3 weeks</td>
<td>Fava et al 122</td>
</tr>
<tr>
<td>Injection of 5 × 10^6 Sk-ChA-1 cells ± intratumoral tamoxifen injections</td>
<td>Significantly decreased CCA development with intratumoral tamoxifen injections</td>
<td>Pawar et al 123</td>
</tr>
<tr>
<td>Injection of 2 × 10^6 QBC939 cells ± magnetic nanoparticle injections via tail vein</td>
<td>CCA tumor growth inhibition with magnetic nanoparticles</td>
<td>Tang et al 124</td>
</tr>
<tr>
<td>Injection of IL-6 overexpressed Mz-ChA-1 stable cell line (Mz-ChA-IL6) vs control vector Mz-ChA-1 cell line</td>
<td>Overexpression of IL-6 increased growth of xenograft tumors</td>
<td>Meng et al 115</td>
</tr>
<tr>
<td>Injection of miR26a overexpressed CCLP1 cell line vs scramble control CCLP1 cell line</td>
<td>Overexpression of miR26a increased growth of xenograft tumors</td>
<td>Zhang et al 115</td>
</tr>
<tr>
<td>Injection of miR494 overexpressed stable HuCCT1 cell line vs control vector QBC939 cell line</td>
<td>Overexpression of miR494 increased growth of xenograft tumors</td>
<td>Oliaru et al 116</td>
</tr>
<tr>
<td>Injection of stable QBC939 cell line transfected with Slug siRNA vs control vector QBC939 cell line</td>
<td>Slug silencing suppressed growth of xenograft tumors</td>
<td>Zhang et al 117</td>
</tr>
<tr>
<td>Injection of stable QBC939 cell line transfected with Beclin-1 siRNA vs control vector QBC939 cell line</td>
<td>Beclin-1 silencing decreased growth of xenograft tumors</td>
<td>Hou et al 118</td>
</tr>
<tr>
<td>Injection of stable QBC939 cell line transfected with Beclin-1 siRNA vs control vector QBC939 cell line</td>
<td>Beclin-1 silencing decreased growth of xenograft tumors</td>
<td>Hou et al 118</td>
</tr>
<tr>
<td>Liver-specific inactivation of SMAD4 and PTEN</td>
<td>Tumor formation in all animals at 4–7 months of age</td>
<td>Xu et al 120</td>
</tr>
<tr>
<td>Liver-specific inactivation of macrophage stimulating factor 1 and 2</td>
<td>Development of tumors with dense peritumoral fibrosis and other histologic and genetic features of human iCCA</td>
<td>Farazi et al 121</td>
</tr>
<tr>
<td>Liver-specific inactivation of WW45, a homolog of Drosophila Salvador and adaptor for the Hippo kinase</td>
<td>Development of tumors with mixed histologic features of HCC and CCA</td>
<td>Lee et al 123</td>
</tr>
<tr>
<td>Liver-specific activation of KRAS and deletion of TP53</td>
<td>Development of stroma-rich tumors; shortened time to tumor development and increased metastasis with the combination of KRAS activation and TP53 deletion</td>
<td>O’Dell et al 124</td>
</tr>
<tr>
<td>Overexpression of intracellular domain of Notch1 in livers of transgenic mice</td>
<td>Formation of tumors with features characteristic of iCCA</td>
<td>Zender et al 125</td>
</tr>
<tr>
<td>Orthotopic rat models</td>
<td>Rapid (21–26 days) development of cholangiocarcinoma characterized by biliary obstruction and gross peritoneal metastasis; origin of tumor stroma and tumor tissue from same species (rat)</td>
<td>Sirica et al 126</td>
</tr>
<tr>
<td>Three-dimensional organotypic culture model of CCA in rats</td>
<td>Stromal microenvironment, gene expression profile, and pathophysiologic characteristics that mimic desmoplastic iCCA in vivo</td>
<td>Campbell et al 127</td>
</tr>
<tr>
<td>Carcinogen-induced models</td>
<td>Formation of mucin-producing CCA tumors; overexpression of C-NEU and MET</td>
<td>Radaeva et al 128</td>
</tr>
<tr>
<td>Furan-induced cholangiocarcinogenesis in rat liver</td>
<td>Increased development and growth of CCA tumors in lean rats treated with thioacetamide</td>
<td>Fava et al 129</td>
</tr>
<tr>
<td>Chronic administration of thioacetamide in lean rats and rats with faulty leptin receptors</td>
<td>Increased CCA progression in mice with LMBDL given DEN compared with mice without LMBDL given DEN</td>
<td>Yang et al 130</td>
</tr>
<tr>
<td>Administration of DEN ± LMBDL to induce chronic cholestasis and CCA development</td>
<td>Development of pus and tumor in liver starting at 20 weeks after O viverrini infection/DEN administration; all hamsters in experimental group were dead by 28 weeks</td>
<td>Plengsuriyakarn et al 131</td>
</tr>
</tbody>
</table>

BDEneu, highly malignant cholangiocarcinoma cell line; CCLP1, cholangiocarcinoma cell line; C-NEU, rat homologue of human ERBB2; CypA, cyclophilin A; DEN, diethylnitrosamine; HuCCT1, cholangiocarcinoma cell line; KRAS, Kirsten rat sarcoma viral oncogene homolog; LMBDL, left and median bile duct ligation; M139, cholangiocarcinoma cell line; Mz-ChA-1, cholangiocarcinoma cell line; PTEN, phosphatase and tensin homolog deleted on chromosome ten; QBC939, human hilar bile duct carcinoma cell line; Sk-ChA-1, cholangiocarcinoma cell line; siRNA, small interfering RNA; SMAD4, SMAD family member 4.
A model described by Sirica et al., in which rat CCA cells were injected into rat biliary trees, is unique in that the stroma and epithelial cells were derived from the same species. These animals allow for investigations of tumor-stroma interactions that more closely resemble those of patients. Although transgenic models do allow for study of the tumor microenvironment, they tend to be technically challenging and expensive. Animals with genetic alterations that lead to production of CCAs that resemble human tumors are needed.

Diagnosis and Management

It can be a challenge to diagnose CCA because of its paucicellular nature, anatomic location, and silent clinical character. Diagnosis requires a high index of suspicion and a multidisciplinary approach that involves clinical, laboratory, endoscopic, and radiographic analyses.

iCCA

iCCA is divided into mass-forming, periductal infiltrating, and intraductal growth types. The clinical manifestations of iCCA include nonspecific symptoms such as abdominal pain, cachexia, malaise, fatigue, and night sweats. iCCA frequently presents as an intrahepatic mass lesion; imaging modalities including computed tomography (CT) and magnetic resonance imaging (MRI) aid in the diagnosis. The use of contrast enhancement improves the sensitivity of MRI for detection of iCCA because these tumors typically have progressive uptake of contrast during the venous phase. HCCs, on the other hand, are characterized by rapid contrast uptake during the arterial phase, followed by a delayed venous washout phase. CT and MRI have similar utility in the evaluation of tumor size and detection of satellite lesions. However, CT may be better for assessment of vascular encasement, identification of extrhepatic metastasis, and determination of resectability.

Serum levels of carbohydrate antigen 19-9 (CA19-9), a tumor biomarker, can aid in diagnosis, but this assay detects iCCA with only 62% sensitivity and 63% specificity. Moreover, increased levels of CA19-9 also have been observed in patients with benign diseases such as bacterial cholangitis or choledocholithiasis. Nonetheless, very high levels of CA19-9 (>1000 U/mL) have been associated with metastatic iCCA, so this assay might be used in disease staging rather than diagnosis. Mixed tumors are characterized by histologic and imaging features of HCC and iCCA. In these cases, immunohistochemical analysis for cytokeratins 7 and 19 can be useful—tumors positive for cytokeratins can be considered to be mixed hepatocellular CCA. A definitive diagnosis of iCCA requires liver biopsy analysis. According to the World Health Organization classification criteria, iCCAs can be adenocarcinomas or mucinous carcinomas.

The treatment of choice for iCCA is surgical resection. Patients should undergo surgery only if they have potentially resectable tumors and are appropriate surgical candidates. After surgical resection, the median time of disease-free survival is 26 months; reported rates of recurrence are 60%–65%. Approximately 60% of patients survive for 5 years after resection. Factors associated with recurrence and reduced survival time after resection include vascular invasion, lymph node metastasis, multiple tumors, and cirrhosis. Nuclear expression of S100A4, a member of the S100 family of calcium-binding proteins, in neoplastic ducts was associated with metastasis and reduced time of survival after surgical resection in a subset of patients with CCA.

Liver transplantation as a curative option for iCCA is highly controversial. iCCA was reported to recur in 70% of patients within 5 years of liver transplantation, and the median disease-free survival time was 8 months in a series of 14 patients with iCCA or mixed HCC-iCCA. Patients with very small iCCAs (<2 cm) in the context of cirrhosis, however, do as well as patients undergoing liver transplantation for HCC. Locoregional therapy, including transarterial chemoembolization and radiofrequency ablation, has garnered interest as a therapeutic option for patients with unresectable iCCA. The standard practice of care for advanced-stage iCCA is systemic chemotherapy with gemcitabine and cisplatin.

pCCA

pCCAs can have exophytic or intraductal macroscopic growth patterns. The exophytic or mass-forming type can be of the nodular subtype or the periductal subtype (the most common subtype). There are also subtypes of intraductal patterns, including the intraductal growing type, mucin-producing type, papilloma type, and cystic type. Patients with pCCA can present with nonspecific symptoms including abdominal discomfort, cachexia, weight loss, and malaise. However, their presentation typically is consistent with biliary obstruction presenting with jaundice, and less commonly cholangitis.

Hypertrophy–atrophy complex, a phenomenon characterized by hypertrophy of the unaffected liver lobe and atrophy of the affected lobe, presents as unilobar palpable prominence on physical examination. Laboratory analyses, including measurements of alkaline phosphatase and bilirubin levels, do not provide specific information because they typically reflect concomitant cholestasis and cholangitis. For the same reason, serum levels of CA19-9 are less specific in detecting pCCA than iCCA. IgG4 disease can present in a similar manner, so its presence should be excluded by evaluation for serum levels of IgG4.

In addition to MRI and CT, magnetic resonance cholangiopancreatography, endoscopic retrograde cholangiography (ERC), and endoscopic ultrasound are used in the diagnosis of pCCA (Figure 4). Of these, MRI plus magnetic resonance cholangiopancreatography is the preferred imaging modality because it can assess resectability and tumor extent with an accuracy of up to 95%. Endoscopic ultrasound aids in evaluation for the presence of regional lymphadenopathy and omental metastasis via fine-needle aspiration. However, fine-needle aspiration should not
be performed on the primary tumor because it can disseminate the tumor. ERC serves a diagnostic and therapeutic purpose—it is used to assess and sample the biliary tree via brush cytology and endoscopic biopsy, as well as dilatation and stent placement in cases of biliary obstruction.

Fluorescence in situ hybridization (FISH) analysis increases the sensitivity of cytology in diagnosing pCCA. FISH can detect polysomy or amplification of at least 2 chromosomes: tetrasomy and trisomy 7. Of these, polysomy in the presence of a dominant stricture is considered sufficient for the diagnosis of pCCA, especially if the polysomy can be confirmed over time. Tetrasomy can be seen during the M phase of mitosis and should be interpreted with caution. Trisomy 7 often is observed with inflammation of the biliary tree. Detection of polysomy by FISH also has been shown to predict the development of malignancies in patients with PSC with no mass and equivocal cytology. In a recent study, patients with PSC who had polysomy and levels of CA19-9 greater than 129 U/mL all went on to develop cancer, mainly within 2 years (Figure 5).

The only curative options for pCCA are surgical resection and neoadjuvant chemoradiation followed by liver transplantation. The Bismuth–Corlette staging classification is based on the anatomic location of the CCA within the biliary tree and is meant to help guide decision making. Recently, this classification was expanded to take into account vascular encasement and parenchymal value of the potential remnant lobe. Surgical resection entails lobar hepatic and bile duct resection, regional lymphadenectomy, and Roux-en-Y hepaticojejunostomy. Potential contraindications to curative surgical resection include contralateral or bilateral vascular encasement and pCCA extension bilaterally to the level of the secondary biliary branches. The presence of regional lymphadenopathy does
Table 2. Criteria for Liver Transplantation in pCCA

<table>
<thead>
<tr>
<th>Diagnosis of cholangiocarcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive transmural biopsy</td>
</tr>
<tr>
<td>Positive biliary brush cytology</td>
</tr>
<tr>
<td>Malignant-appearing stricture on ERC with a CA 19-9 level > 100 U/mL and/or FISH polysomy</td>
</tr>
<tr>
<td>Mass lesion on cross-sectional imaging and malignant-appearing stricture on ERC/MRCP</td>
</tr>
</tbody>
</table>

Tumor size
- Radial tumor diameter of ≤ 3 cm
- Tumor confined to biliary tree
- Absence of intrahepatic or extrahepatic metastasis

Unresectability
- Unresectable hilar tumor (above the cystic duct)
- CCA in a PSC patient (owing to skip lesions, the field defect, and parenchymal liver disease)

MRCP, magnetic resonance cholangiopancreatography.

not necessarily preclude surgery. Occasionally, a tumor may be resectable but the remnant lobe has limited volume. In such cases, resectability can be achieved by preoperative relief of biliary obstruction and portal vein embolization of the affected lobe with resultant compensatory hyperplasia of the contralateral unaffected liver lobe. Rates of 5-year survival after surgical resection with negative margins range from 11% to 41%.

With the advent of new liver transplantation protocols, neoadjuvant chemoradiation followed by transplantation has become an appealing option for patients selected carefully using stringent criteria. Sixty-five percent of patients who were treated with neoadjuvant therapy followed by liver transplantation at 12 large-volume transplant centers survived for 5 years. Rigorous selection is imperative for successful outcomes. Eligibility criteria include radial diameter of tumor of less than 3 cm, absence of intrahepatic or extrahepatic metastasis, and, in the case of patients without PSC, unresectability. Because of the presence of parenchymal liver disease, patients with PSC typically require liver transplantation rather than surgical resection.

For patients who are not candidates for surgical resection or liver transplantation, systemic chemotherapy with gemcitabine and cisplatin is recommended. For patients with biliary obstruction, adequate drainage is essential to relieve cholestasis and increase tolerance to chemotherapy.

dCCA

Intraductal papillary neoplasm and biliary intra-epithelial neoplasia are the precursor lesions of dCCA. dCCA arises from the point of insertion of the cystic duct to the ampulla of Vater and therefore can be difficult to distinguish from early pancreatic cancer. Analogous to pCCA, patients typically present with painless jaundice, and laboratory analysis is consistent with biliary obstruction. Although pCCA and dCCA are distinct with respect to their pathogenesis and treatment, most studies evaluating diagnostic modalities have grouped these as extrahepatic CCAs. Cross-sectional imaging, endoscopic ultrasound, and ERC therefore are used in the same manner in the diagnosis of dCCA as with pCCA.

Diagnosis is made on the basis of the presence of a dominant stricture and positive cytology and/or detection of polysomy by FISH. Surgical treatment of dCCA typically entails a Whipple procedure. Only 27% of patients survive for 5 years after surgical resection that attains negative margins. The role of neoadjuvant chemoradiation is limited. For patients who are not candidates for surgical resection, chemotherapy may be considered.

Future Directions

Treatment options for CCA are limited and overall survival rates are low. Earlier detection of CCA increases the chance of having curative treatment options. However, despite recent advances in diagnosis, such as improved imaging and cytology techniques, including FISH, further work is necessary to overcome the challenge of diagnosing CCA at an earlier stage. CCA often still is diagnosed based on clinical criteria, such as a malignant-appearing bile duct stricture, increased serum levels of CA19-9, appearance of a mass during MRI, normal serum levels of IgG4 level, and so forth.

There are significant geographic and ethnic variations in the incidence of CCA, so genetic factors are likely to contribute to its pathogenesis. Inflammatory and oncogenic signaling pathways also are involved in cholangiocarcinogenesis, and are potential therapeutic targets. Further studies are necessary to elucidate the role of genetic aberrations, particularly in regions encoding key components of signaling pathways. In addition, the role of miRs as biomarkers remains to be fully elucidated. CCAs are heterogeneous; treatments are likely to be designed based on features of each individual tumor. Potential therapeutic targets could include the MET tyrosine receptor kinase, FGFR2, the PI3K–Akt–mTOR pathway, and IDH mutations. Molecular profiling of tumors, to identify their specific mutations, could make it possible to offer targeted therapies in personalized treatments.

Although cancer cells contain many genetic and functional aberrations, the tumor stroma appears to be more uniform and has strong potential as a target for new combination therapies. Further work is needed to highlight the dynamic reciprocal communication between tumor and stroma.

References

75. Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH1) and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 2012;17:72–79.

129. Choi SB, Kim KS, Choi JY, et al. The diagnosis and survival outcome of intrahepatic cholangiocarcinoma following surgical resection:

Received August 8, 2013. Accepted October 10, 2013.

Reprint requests
Address requests for reprints to: Gregory J. Gores, MD, Professor of Medicine and Physiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. e-mail: gores.gregory@mayo.edu; fax: (507) 284-0762.

Acknowledgments
The authors would like to thank Dr Thomas Smyrk for kindly providing the stromal cholangiocarcinoma photomicrograph and Ms Courtney Hoover for outstanding secretarial support.

Conflicts of interest
The authors disclose no conflicts.

Funding
This work was supported by National Institutes of Health grants DK59427 (G.J.G.) and T32 DK007198 (S.R.), and the Mayo Foundation.