Which Therapy for *Helicobacter pylori* Infection?

C

larithromycin-containing triple, sequential, concomitant, and hybrid therapies, bismuth-containing 4 drug therapies, and now a levofloxacin-containing concomitant therapy—what is the clinician to do? This issue of *GASTROENTEROLOGY* contains a noninferiority comparison of 2 newer approaches to 4 drug fluoroquinolone-containing therapies and reports good to excellent results. The trial is a model of how such studies should be done. Bravo!

Helicobacter pylori is an infectious organism and clinicians should expect, and in fact, demand that recommended treatments provide cure rates of $\geq 90\%$, and preferably $\geq 95\%$. The current report provides essentially all the details one might wish, including those regarding patient selection, follow-up, therapy for treatment failures, susceptibility testing, and outcome with different patterns of resistance (ie, the data clinicians need to use in their practices).

There are few mysteries with regard to treatment success with *H pylori* therapy: One only need know the success rates with susceptible and resistant strains. The calculations are slightly more complicated with multiple antibiotic-containing regimens; as the number of antibiotics increases, the combinations of antibiotics remaining effective when resistance is present to ≥ 1 also increases (see below). Where a study is done (eg, Italy or the United States) is not important. What is important is the local pattern of resistance (ie, if their bugs are like your bugs, one should expect the same results). If such data were available for each new therapy, acceptance or rejection for local use could be based on rational grounds.

Until recently, most comparative trials and meta-analyses of anti-*H pylori* therapies consisted of comparisons of regimens with unacceptably low success (eg, bismuth 60.9% vs clari triple 46.5%) or a good regimen versus one with unacceptable results (ie, a good vs a bad, eg, sequential 91% vs triple 75.5%). Randomization to regimens known to be inferior is now generally recognized as unethical and should neither be done, published, nor subject to meta-analysis. Hopefully, in the future few such trials will be done and fewer will be published.

What should you expect in your practice? We focus herein on the levofloxacin concomitant regimen because it combines success, simplicity, and cost savings compared with the same drugs used as sequential therapy. Treatment success with levofloxacin susceptible strains (and no other resistances) was about 97%, vs 67% for levofloxacin-resistant and metronidazole-susceptible strains, and 90% for metronidazole-resistant and levofloxacin-susceptible strains. In the Federico et al trial, the number of resistant strains was low, resulting in wide 95% confidence intervals for the results with resistant strains; more clinical experience is required to fully understand and quantify the limitations of this new therapy.

In the presence of fluoroquinolone resistance, the fluoroquinolone effectively drops out, leaving a 5-day metronidazole-amoxicillin–proton pump inhibitor (PPI) triple therapy. Metronidazole resistance alone leaves a 5-day levofloxacin triple therapy. Both triple regimens still have a relatively high dose of PPI. Dual levofloxacin and metronidazole resistance produces a 5-day dual PPI–amoxicillin therapy, which should yield a treatment success of around 25%. The formula for treatment outcome based on these study data is:

\[
\text{Outcome} = (\% \text{ with no resistances} \times 0.97) \\
+ (\% \text{ metronidazole resistant} \times 0.9) \\
+ (\% \text{ levofloxacin resistant} \times 0.67) \\
+ (\% \text{ dual resistant} \times 0.25).
\]

Figure 1 shows that one would expect the regimen to maintain its effectiveness as long as fluoroquinolone resistance remained below 20%–25%. Using the formula, one would expect a high prevalence of metronidazole resistance alone (eg, 50%) to be well tolerated (success $\geq 90\%$); however, dual levofloxacin and metronidazole resistance...
alone would compromise success if resistance exceeded approximately 10%.

The ability to extrapolate outcomes based on trial data is only possible if the susceptibility data and outcome for each subgroup are presented. Studies without such data should be strongly discouraged; hopefully, fewer journals will be willing to accept them. The lack of such data is largely responsible for the ongoing controversy regarding the place of sequential therapy.9

Role of Fluoroquinolone Therapies

Fluoroquinolone resistance is increasing rapidly worldwide; fluoroquinolones have become the antibiotic du jour in many countries. It behooves the clinician to take a good history of possible fluoroquinolone use, including ciprofloxacin, because prior use virtually ensures resistance. Fluoroquinolones also have “black box” warnings and probably should not be considered for first-line empiric therapy, except where fluoroquinolone resistance is rare and both clarithromycin and metronidazole resistance is high.

As noted, results in the presence of resistance change a 4-drug levofloxacin quadruple therapy into 5-day triple therapies (either a metronidazole or a levofloxacin triple therapies). Of interest, the reported results were higher than one would expect based on experience and published meta-analysis of 7-day regimens (eg, 7-day fluoroquinolone therapies typically have produced unacceptably low success; 10-day regimens were better, but rarely achieve 90% success).10 This contrasts with 14-day fluoroquinolone triple therapy, which seemed to provide excellent results.11 Caveats are that most prior studies likely contained a mixture of susceptible and resistant strains and the E test overestimates the prevalence of metronidazole resistance.12 Nonetheless, the data are the data and additional experiments to increase the sample size are needed to provide more accurate results.

What remains to be done with sequential and concomitant fluoroquinolone therapies? All regimens should be optimized, meaning identification of the preferred components, including drugs, doses, formulations, number and timing of administrations per day, relation to meals, and duration of therapy that provides the simplest, best accepted, and cheapest regimen that also maintains the effectiveness at >90% or 95%. Those attempting to duplicate the results of Federico et al1 without such pilot data confirming high levels of success with an altered regimen.

Our understanding of the numerical effects resistance to levofloxacin and metronidazole on treatment outcome are also based on small numbers and these results need to be firmed up. Small carefully designed studies in populations with previously identified metronidazole or levofloxacin resistance should be considered.

The early history of sequential therapy was not to optimize the regimen and quantify the effects of resistance, but instead to repeatedly reconfirm that sequential therapy was superior to triple therapy, a known inferior regimen. This was followed by a meta-analysis consisting largely of these same data.4 We believe that comparison trials are best reserved for multicenter trials.14 Clinical trials should also have stopping rules to allow inferiorly performing regimens to be stopped as soon as it becomes clear that they cannot achieve the prespecified success outcomes.13 Only regimens that produce good to excellent results should be compared, because only regimens that achieve their prespecified outcome (such as >90% or >95% treatment success) should be recommended for clinical practice.

Recommended Therapies

Ideally, infectious disease therapies are chosen based on culture and susceptibility testing from each patient. The alternative is to choose a regimen based on the pattern of resistance locally; thus, the admonition is to use the regimens that are most effective locally.15 Clarithromycin-containing triple therapy loses effectiveness (eg, success <90%) when resistance is between 7% and 10%. Clarithromycin-containing sequential and concomitant therapies lose effectiveness with moderate clarithromycin resistance (ie, 15%–20%) and when metronidazole resistance approaches 40%. We prefer concomitant therapy because it is not complex and it may retain its effectiveness at a slightly higher level of resistance compared with sequential therapy. Hybrid therapy (dual amoxicillin plus a PPI followed by concomitant therapy) is theoretically superior to concomitant alone, but that remains to be tested in areas with high resistance or directly against resistant strains.16 Bismuth-containing quadruple therapy is an effective regimen, provided the doses are sufficient and the duration is ≥10—and preferably 14—days, especially whenever metronidazole resistance is considered likely. Compliance remains an issue for anti- H pylori regimens and special efforts to ensure compliance are always needed.

In conclusion, in the United States, clarithromycin resistance has undermined clarithromycin-containing therapy and it should be abandoned as an empiric regimen. Fluoroquinolone resistance is also increasing rapidly. We prefer the 4-drug non–bismuth-containing concomitant
or alternately sequential therapies for treatment of naïve patients. The alternative is a 4-drug, bismuth–metronidazole–tetracycline–PPI regimen with treatment extended to 14 days if metronidazole resistance is suspected. The new levofloxacin-containing concomitant regimen is a good choice for rescue therapy (failed 2 different therapies), provided that the doses and drugs are used exactly as described and susceptibility testing is available or, at least, the patient has no history of prior fluoroquinolone use.

DAVID Y. GRAHAM
Department of Medicine
Michael E. DeBakey VAMC and
Baylor College of Medicine
Houston, Texas

AKIKO SHIOTANI
Department of Internal Medicine
Kawasaki Medical School
Okayama, Japan

References
1. Federico A, Nardone G, Gravina AG, et al. Efficacy of 5-day levo-
foflaxacin-containing concomitant therapy in eradication of Helico-
2. Graham DY, Dore MP. Helicobacter pylori therapy demystified.
3. Li Y, Huang X, Yao L, et al. Advantages of moxifloxacin and
levofloxacin-based triple therapy for second-line treatments of per-
sistent Helicobacter pylori infection: a meta analysis. Wien Klin
Wochenschr 2010;122:413–422.
therapy for Helicobacter pylori infection: systematic review and
meta-analysis of randomized controlled trials in adults and chil-
5. Graham DY. Helicobacter pylori eradication therapy research: eth-
ical issues and description of results. Clin Gastroenterol Hepatol
2010;8:1032–1036.
Ther 2012;35:858.
7. Lind T, Megraud F, Unge P, et al. The MACH2 study: role of
omeprazole in eradication of Helicobacter pylori with 1-week triple
8. Attumi TA, Graham DY. Increasing the duration of dual amoxicillin
plus omeprazole Helicobacter pylori eradication to 6 weeks: a pilot
9. Moayyedi P, Maiertherheimer P. Editorial: sequential therapy for erad-
ication of Helicobacter pylori: a new guiding light or a false dawn?
therapy versus bismuth-based quadruple therapy for persistent Helicobacter pylori infection: a meta-analysis. Am J Gastroenterol
2006;101:488–496.
on 14 versus 7 days of esomeprazole, moxifloxacin, and amoxi-
cillin for second-line or rescue treatment of Helicobacter pylori
the NCCLS-approved agar dilution method to detect metronidazole
and clarithromycin resistant Helicobacter pylori. Int J Antimicrob
Agents 2001;17:39–44.
145–148.
14. Graham DY, Rimbara E. Understanding and appreciating sequen-
tial therapy for Helicobacter pylori eradication. J Clin Gastroenterol
2011;45:309–313.
15. Graham DY, Fischbach L. Helicobacter pylori treatment in the era
therapy: proton pump inhibitor and amoxicillin for 14 days with
clarithromycin and metronidazole added as a quadruple (hy-
brid) therapy for the final 7 days. Helicobacter 2011;16:139–145.

Reprint requests
Address requests for reprints to: David Y. Graham, MD, Michael E.
DeBakey Veterans Affairs Medical Center, RM 3A-322 (111D), 2002
Holcombe Boulevard, Houston, Texas 77030. e-mail: dgraham@bcm.
tmc.edu; Phone: 713-795-0232; Fax: 713-790-1040.

Funding
Dr Graham is supported in part by the Office of Research and
Development Medical Research Service Department of Veterans
Affairs, Public Health Service grant DK56338, which funds the Texas
Medical Center Digestive Diseases Center, and NIH grants DK067366
and CA116845. The contents are solely the responsibility of the
authors and do not necessarily represent the official views of the VA
or NIH.

Conflicts of interest
The authors disclose the following: Dr Graham is an unpaid
consultant for Novartis in relation to vaccine development for
prophylaxis of H pylori infection. Dr Graham is a also a
paid consultant for RedHill Biopharma regarding novel H pylori
therapies and for Otsuka Pharmaceuticals regarding diagnostic
testing. In the past Dr Graham has received royalties from Baylor
College of Medicine patents covering materials related to 13C-urea
breath test. Dr Shiotani discloses no conflicts.

© 2012 by the AGA Institute
0016-5085/$36.00
http://dx.doi.org/10.1053/j.gastro.2012.05.012